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models being studied:

• SU(3)

• fundamental: Nf=6, 8, 10, 12, 16

• sextet: Nf=2

• SU(2)

• adjoint: Nf=2

• fundamental: Nf=8

• SU(4)

• decuplet: Nf=2
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Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.
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Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
each case we try to emphasize the sources of systematic errors that need to be kept under control
in order to draw robust conclusions from numerical data.

2.1 Phase structure of the lattice theories.

Lattice simulations are performed by discretizing the action of a given theory on a Euclidean
space-time lattice. At weak coupling the RG flow can be computed perturbatively, and the relevant
parameters are easily identified. For an asymptotically-free gauge theory, g = 0 is an UV fixed
point that defines the usual continuum limit of the lattice theory. The IRFP that we are seeking is
a fixed point on the massless renormalized trajectory that originates from the continuum limit. As
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SU(3) + Nf=12   [fundamental]



Hadron spectrum: 
         mf-response in mass deformed theory

• IR conformal phase:

• coupling runs below μ=mf:   like nf=0 QCD with ΛQCD~mf

• multi particle / glueball state :  MH ∝ mf1/(1+γm*);   F! ∝ mf1/(1+γm*)

• SχSB phase:

• ChPT (but, large Nf, small F    ⇔ real QCD)

• hard to get to the chiral regime

• at leading:  M!2 ∝ mf,  ;   F! = F + c mf

• so far no chiral logs are observed → polynomial in mf



Simulation

• Nf=12 HISQ (Highly Improved Staggered Quarks)

• tree level Symanzik gauge

• β=6/g2=3.7,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.04≦mf≦0.2

• β=6/g2=4.0,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.05≦mf≦0.24

• Nf=4 HISQ for the reference of SχSB for comparison

• using MILC code v7 with some modifications



staggered flavor symmetry for Nf=12 HISQ

• comparing mesonic mass with local PS and V operators  for β=3.7
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FIG. 20. The effective mass of both two operators at β = 3.7, 4 on (L/a, T/a) = (30, 40). {fig:spectrum}

Appendix B: Analysis of conformal hypothesis fit

{sec:conformal_fit}

In this appendix we show the details of fit results on the conformal hypothesis.

In the conformal hypothesis with a finite volume, we make an attempt to use the fit

functions given in Eq. 14. In the generic situation, however, we do not know how and what

kind of such correction terms can appear from the RG analysis. Therefore in this appendix

we fix the value of the exponent α to a certain value in the fit since it is hard to determine

both two exponents of the power behavior from the fit. We consider three possible value of

alpha as α = (3 − 2γ)/(1 + γ), 1 and 2, so we denote these fit functions as fit b-1, fit b-2

and fit b-3, respectively. We carry out simultaneous fit with above fit functions using all the

data for Mπ, Fπ and Mρ with common anomalous dimension γ and α. We also use same

data points for the fit as in the section V. As already discussed in the section V, additional

correction terms improve the accuracy of the fit efficiently for both case of β = 3.7 and

β = 4. On the other hand, each of the fit results with correction term gives same magnitude

of χ2/dof. Thus in this analysis it is not easy to determine both of γ and α.
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a crude analysis: F!/M! vs M!

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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FIG. 3. Dimension-less ratios Fπ/Mπ and Mρ/Mπ as functions of mf for Nf = 12 at β = 3.7 (filled

symbol) and 4.0 (open symbol) for two largest volumes. {fig:ratio_mf_nf12}

the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:

a(β = 3.7)

a(β = 4)
∼ 2. (8)

The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.

IV. FINITE SIZE SCALING TEST OF THE CONFORMAL HYPOTHESIS
{sec:fss}

A. Preliminary

In the conformal window with finite masses and volume, the RG analysis tell us the

scaling behavior for low energy spectra which should obey the universal scaling relations

[32] as

ξp ≡ LMp = fp(x), (9) {eq:fss_mass}

12

Nf=4: HISQ  β=3.7Nf=12: HISQ



a crude analysis: F!/M! vs M!
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mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}

0 0.1 0.2 0.3 0.4 0.5
a M

!

0.3

0.35

0.4

0.45

0.5

F !
/"

!

16^3 x 24

FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,

11

0 0.5 1 1.5
aM

!

0.17

0.18

0.19

0.2

0.21

0.22

F !
/M

!

L=24
L=30

0 0.5 1 1.5
aM

!

1.1

1.15

1.2

1.25

1.3

M
"/
M

!

L=24
L=30

FIG. 3. Dimension-less ratios Fπ/Mπ and Mρ/Mπ as functions of mf for Nf = 12 at β = 3.7 (filled

symbol) and 4.0 (open symbol) for two largest volumes. {fig:ratio_mf_nf12}

the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:

a(β = 3.7)

a(β = 4)
∼ 2. (8)

The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.

IV. FINITE SIZE SCALING TEST OF THE CONFORMAL HYPOTHESIS
{sec:fss}

A. Preliminary

In the conformal window with finite masses and volume, the RG analysis tell us the

scaling behavior for low energy spectra which should obey the universal scaling relations

[32] as

ξp ≡ LMp = fp(x), (9) {eq:fss_mass}
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a crude analysis: F!/M! vs M!

• β=3.7: small mass: consistent with hyper-scaling

• β=4.0: mass too heavy ?   inconsistent with being in the hyper-scaling region
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the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:
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The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.

IV. FINITE SIZE SCALING TEST OF THE CONFORMAL HYPOTHESIS
{sec:fss}

A. Preliminary

In the conformal window with finite masses and volume, the RG analysis tell us the

scaling behavior for low energy spectra which should obey the universal scaling relations

[32] as
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the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:

a(β = 3.7)

a(β = 4)
∼ 2. (8)

The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.
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conformal (finite size) scaling

• Scaling dimension at IR fixed point [Wilson-Fisher];  Hyper Scaling [Miransky]

• mass dependence is described by anomalous dimensions at IRFP

• quark mass anomalous dimension

• operator anomalous dimension

• meson mass and pion decay constant obey same scaling 

• finite size scaling in a L4 box (DeGrand; Del Debbio et al)

• scaling variable: 

Lfπ = F (x) Lmπ = G(x)

x = Lm
1

1+γ∗

f

mπ = cmm
1

1+γ∗

f fπ = cfm
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FIG. 7. ξπ plotted against the scaling variable x for γ = 0.5, 1.0, 1.5 from left to right for Nf = 4

at β = 3.7, where spontaneous chiral symmetry breaking occurs. An alignment found at γ = 1 is

consistent with Eq. (5) {fig:nf4_mpi_g}
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.
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with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1
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∑
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|ξjp − f (K)
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δ2ξjp
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where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by
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where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by
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points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the
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To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to
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with a certain value of γ, and that f (K)
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by
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where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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B. Finite size hyper-scaling analysis

In the evaluation function Eq. (12), the summation over j is taken for the range of x

where all volume L = 18, 24, 30 have overlapping data. This can be achieved, for all the

values of γ to be tested, by choosing xmin or xmax to be the minimum / maximum of x

for L = 30/18 respectively: L = 30, mf = 0.04 (β = 3.7) or mf = 0.05 (β = 4) for xmin

and L = 18, mf = 0.2 (β = 3.7) or mf = 0.24 (β = 4) for xmax. The maximum mf was

chosen so aMπ
<∼ 1 is satisfied, and the minimum was chosen so that the finite volume effect

on the bound state mass is not too large, as well as to prevent the outrageous computer

effort. Around the optimal γ, we have 12 data points in [xmin, xmax] for β = 3.7 and 11 for

β = 4. Note, however, we use some neighboring data outside of the boundary to obtain the

interpolated value f (K)
p (xj) inside but near the boundary, when it is necessary.

0.3 0.4 0.5 0.6 0.7 0.8
 !

1

10

100

1000

10000

P

all
range 1
range 2
range 3

0.3 0.4 0.5 0.6 0.7 0.8
 !

1

10

100

1000

10000

P

L=18, 24
L=18, 30
L=24, 30

FIG. 9. (Left): The γ dependence of the function P for Mπ(left) at β = 3.7. The function f(x) is

obtained by using linear interpolation function. The vertical axis show the central value of P as a

function of γ. The each of curves show the results of Pπ(γ) with corresponding ranges. (Right):

The results of Pπ(γ) using two data sets with different volumes as L = 18, 24, L = 18, 30 and

L = 24, 30, respectively. We use full range. {fig:P_mpi}

By performing the γ scan the evaluation function using all the data in xmin ≤ x ≤ xmax is

plotted in Figure 9 (“all”) for the β = 3.7 case. A clear minimum exists, where the alignment

of the data is optimal. We repeat this analysis and obtain the optimal γ for each observable

and at each β. The results are tabulated as the “all” column in Table VII. Figures 10 and

11 show ξ for each case as a function of x with optimal γ.

Let us now remind ourselves that the naive analysis of the ratio in Sect. III indicated that
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to quantify the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=!, ρ;   ξF=LF!

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard

14

B. Finite size hyper-scaling analysis

In the evaluation function Eq. (12), the summation over j is taken for the range of x

where all volume L = 18, 24, 30 have overlapping data. This can be achieved, for all the

values of γ to be tested, by choosing xmin or xmax to be the minimum / maximum of x

for L = 30/18 respectively: L = 30, mf = 0.04 (β = 3.7) or mf = 0.05 (β = 4) for xmin

and L = 18, mf = 0.2 (β = 3.7) or mf = 0.24 (β = 4) for xmax. The maximum mf was

chosen so aMπ
<∼ 1 is satisfied, and the minimum was chosen so that the finite volume effect

on the bound state mass is not too large, as well as to prevent the outrageous computer

effort. Around the optimal γ, we have 12 data points in [xmin, xmax] for β = 3.7 and 11 for

β = 4. Note, however, we use some neighboring data outside of the boundary to obtain the

interpolated value f (K)
p (xj) inside but near the boundary, when it is necessary.
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The results of Pπ(γ) using two data sets with different volumes as L = 18, 24, L = 18, 30 and

L = 24, 30, respectively. We use full range. {fig:P_mpi}

By performing the γ scan the evaluation function using all the data in xmin ≤ x ≤ xmax is

plotted in Figure 9 (“all”) for the β = 3.7 case. A clear minimum exists, where the alignment

of the data is optimal. We repeat this analysis and obtain the optimal γ for each observable

and at each β. The results are tabulated as the “all” column in Table VII. Figures 10 and

11 show ξ for each case as a function of x with optimal γ.

Let us now remind ourselves that the naive analysis of the ratio in Sect. III indicated that
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to quantify the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=!, ρ;   ξF=LF!

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• systematic error due to small L, large m estimated by examining the x and L 
range dependence
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the
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with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by
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where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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In the evaluation function Eq. (12), the summation over j is taken for the range of x

where all volume L = 18, 24, 30 have overlapping data. This can be achieved, for all the

values of γ to be tested, by choosing xmin or xmax to be the minimum / maximum of x

for L = 30/18 respectively: L = 30, mf = 0.04 (β = 3.7) or mf = 0.05 (β = 4) for xmin

and L = 18, mf = 0.2 (β = 3.7) or mf = 0.24 (β = 4) for xmax. The maximum mf was

chosen so aMπ
<∼ 1 is satisfied, and the minimum was chosen so that the finite volume effect

on the bound state mass is not too large, as well as to prevent the outrageous computer

effort. Around the optimal γ, we have 12 data points in [xmin, xmax] for β = 3.7 and 11 for

β = 4. Note, however, we use some neighboring data outside of the boundary to obtain the

interpolated value f (K)
p (xj) inside but near the boundary, when it is necessary.
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L = 24, 30, respectively. We use full range. {fig:P_mpi}

By performing the γ scan the evaluation function using all the data in xmin ≤ x ≤ xmax is

plotted in Figure 9 (“all”) for the β = 3.7 case. A clear minimum exists, where the alignment

of the data is optimal. We repeat this analysis and obtain the optimal γ for each observable

and at each β. The results are tabulated as the “all” column in Table VII. Figures 10 and

11 show ξ for each case as a function of x with optimal γ.

Let us now remind ourselves that the naive analysis of the ratio in Sect. III indicated that
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summary of γ obtained by minimizing P(γ) 
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FIG. 13. The results on the value of γ for each observable, β are summarized, where all the

statistical and systematic errors are added in quadrature. Except for the γ from Fπ at β = 4,

where the scaling region is suspected to be outside of the parameter range we have, all the results

are consistent with each other with 1.5σ level. {fig:gamma}

From these analysis, we can conclude that the our data for Nf = 12 lattice simulations is

reasonably consistent with the FSHS, thus, with the low energy conformality, if we exclude

the Fπ at β = 4 from the analysis. The resulting mass anomalous dimensions from different

quantities and two lattice spacings separated by a factor ∼ 2 are reasonably consistent, too.

We quote 0.4 <∼ γ∗ <∼ 0.5 for the mass anomalous dimension at the infrared fixed point.

V. FINITE SIZE HYPER SCALING FIT
{sec:fshp}

We found in the previous sections that the hyper-scaling might be working, but, the

non-universal correction could be important in the mass and volume range we have. In this

section we try to test two plausible models for the correction. To do this test we need to fix

the term for the universal scaling in the following. Therefore, the approach looses generality

that the analysis in the previous section had. Thus, the result here is not going to be the

main result in this paper, but, still provides an useful information.

In the conformal hypothesis in a finite volume, we basically follow the finite size hyper-

scaling ansatz given in previous section, but in this section we try several fit functions by

adding some correction terms which can not be represented by a single scaling variable

20



summary of γ obtained by minimizing P(γ) 

• consistent γ by 1.5 σ level except for F! at β=4.0
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From these analysis, we can conclude that the our data for Nf = 12 lattice simulations is

reasonably consistent with the FSHS, thus, with the low energy conformality, if we exclude

the Fπ at β = 4 from the analysis. The resulting mass anomalous dimensions from different
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We quote 0.4 <∼ γ∗ <∼ 0.5 for the mass anomalous dimension at the infrared fixed point.
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From these analysis, we can conclude that the our data for Nf = 12 lattice simulations is

reasonably consistent with the FSHS, thus, with the low energy conformality, if we exclude

the Fπ at β = 4 from the analysis. The resulting mass anomalous dimensions from different

quantities and two lattice spacings separated by a factor ∼ 2 are reasonably consistent, too.

We quote 0.4 <∼ γ∗ <∼ 0.5 for the mass anomalous dimension at the infrared fixed point.
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summary of γ obtained by minimizing P(γ) 

• consistent γ by 1.5 σ level except for F! at β=4.0

• remember: F! at β=4.0 speculated to be out of the scaling region

• universal low energy behavior: good with 0.4<γ*<0.5
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From these analysis, we can conclude that the our data for Nf = 12 lattice simulations is

reasonably consistent with the FSHS, thus, with the low energy conformality, if we exclude

the Fπ at β = 4 from the analysis. The resulting mass anomalous dimensions from different

quantities and two lattice spacings separated by a factor ∼ 2 are reasonably consistent, too.

We quote 0.4 <∼ γ∗ <∼ 0.5 for the mass anomalous dimension at the infrared fixed point.
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non-universal correction could be important in the mass and volume range we have. In this

section we try to test two plausible models for the correction. To do this test we need to fix

the term for the universal scaling in the following. Therefore, the approach looses generality

that the analysis in the previous section had. Thus, the result here is not going to be the

main result in this paper, but, still provides an useful information.

In the conformal hypothesis in a finite volume, we basically follow the finite size hyper-

scaling ansatz given in previous section, but in this section we try several fit functions by

adding some correction terms which can not be represented by a single scaling variable
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Conformal type fit with finite volume correction

• simultaneous fit it with a leading mass dependent correction is not bad

• b-1: Ladder Schwinger-Dyson,   b-2: (am)2 lattice artifact

• resulting γ is consistent with the model independent analysis

x = Lm1/(1+γ)
f . We make an attempt to use the following formulae as

ξ = c0 + c1Lm
1/(1+γ)
f · · · fit a, (14) {eq:f}

ξ = c0 + c1Lm
1/(1+γ)
f + c2Lm

α
f · · · fit b. (15)

The first one (fit a) is a naive fit form based on the hyper-scaling relation which is described

by the function form of f(x) = c0+ c1x with x = Lm1/(1+γ)
f . This formula is motivated from

the results obtained in Fig. 10, since the clear linearity of the data for large x can be found

near the optimal value of γ.

The second one (fit b) is considered as the above function for the hyperscaling including

the mass corrections. As discussed in the previous section, there may exist some corrections

beyond the hyperscaling relations in the region we simulated, so we try to include such

contributions. In particular the value of α = (3 − 2γ)/(1 + γ) is inspired by the analytic

expression of the solution of the SD equation given in [33] and the analogous structure in the

region of the large anomalous dimension is also discussed in [39]. We also consider the case

of the value of α = 2. This correction could be regarded as the small mass correction caused

by explicit chiral symmetry breaking effects or due to the lattice discretization artifact. It

is noted that in both cases the fit function cannot be described by a single scaling variable

x = Lm1/(1+γ)
f . We denote these fit functions with α = (3− 2γ)/(1+ γ) and α = 2 as fit b-1

and fit b-2, respectively. In this section we try to carry out the fit using these fit functions,

namely, fit a, fit b-1, and fit b-2. Another simple correction term with α = 1 can also be

considered in Ref. [26]. All the details of the fit results including other ansatz are shown in

the appendix B.

The finite size correction to the value ξ has been also considered. This kind of the

correction is motivated by the Fisher’s argument for the critical phenomena on a finite

system [40]. The study of the hyper scaling with such corrections in the QCD with many-

flavor has been seen in [41]. Here in order to avoid the large finite size effects, we restrict

ourselves to use of the data points in the fit which satisfy ξπ > L(= 30) ×Mπ(mf = 0.04)

for β = 3.7 and ξπ > L(= 18)×Mπ(mf = 0.08) for β = 4.

We carry out simultaneous fit with above fit functions using all the data for Mπ, Fπ and

Mρ with common anomalous dimension γ. The fit results of γ and χ2/dof are shown in

table VIII and figure 14 for β = 3.7 and and figure 15 for β = 4. Here we assume that the

possible correlations among these observables can be neglected. In these figures the data
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FIG. 14. The each of spectra ξπ(left), ξF (center) and ξρ(right) as a function of mf at β = 3.7.

For simplicity, we only show two fit results of fit a and fit b-2, by the solid and dotted curves,

respectively. The data with empty symbols are not used in the fit. {fig:mpiL}
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FIG. 15. The each of spectra ξπ(left), ξF (center) and ξρ(right) as a function of mf at β = 4.

For simplicity we only show two fit results of fit a and fit b-2, by the solid and dotted curves,

respectively. The data with empty symbols are not used in the fit. {fig:mpiL_b4}

VI. CHIRAL PERTURBATION THEORY ANALYSIS
{sec:chpt}

In order to give a fair comparison of scenarios whether or not the chiral symmetry is

spontaneously broken, we carry out the fit based on the ChPT hypothesis in our data.

23

γ α χ2/dof

fit a 0.455(3) - 5.43

fit b-1 0.417(10) (3−2γ)
(1+γ) 1.88

fit b-2 0.431(8) [2] 1.83

γ α χ2/dof

fit a 0.435(3) - 7.92

fit b-1 0.412(13) (3−2γ)
(1+γ) 1.53

fit b-2 0.424(8) [2] 1.61

TABLE VIII. The fit results of finite size conformal hypothesis at β = 3.7(left) and β = 4(right).

The values sandwiched as [· · · ] mean the input in the fit. {tab:fsc}

not used in the fit is denoted by the empty symbol. The full results in these analyses are

also shown in the appendix B.

First, let us look at the result at β = 3.7. One finds that the fit can work for our data

with the above ansatz. The fit curves of fit b-2 match to the data in the large fermion mass

region better than fit a for the case of Fπ. In fact, the fit results with correction terms

(fit-b) improve the quality of the fit, where both of fit b-1 and b-2 give χ2/dof ∼ 1.8− 1.9.

In contrast, the result of fit a gives χ2/dof ∼ 5. For the case of Mπ, both fit curves show

similar behavior and the contribution of correction term c2 are very small. (As shown in

appendix, the value of c2 in the fit b-2 is consistent with zero within the error.) This fact is

also consistent with the analysis of the finite size hyper-scaling in previous section, because

it is found that the optimal value of γ for Mπ at β = 3.7 is stable against the change of the

mass range. As a result, we can describe our data for three observables by one universal

γ ∼ 0.41 − 0.43 which is slightly smaller than the value obtained by using the function of

fit a. This result is actually consistent with one given by the finite size scaling test in the

previous section. In the case of β = 4, similar results can be found. That is to say, the fit

function with mass correction term help to improve the accuracy of the fit. Then the value

of χ2/dof is reduced from 7.9 to 1.5 − 1.6. We obtain the value of anomalous dimension

γ ∼ 0.41 − 0.42 which is also consistent with the one obtained in the previous section and

the one given by the fit at β = 3.7.

From these analysis, we can obtain the universal value of the γ from the fit with correction

term in both cases of β = 3.7 and 4.0. Thus the discrepancy of the γ among observables

discussed in the previous section may be understood by assumption of such non-universal

correction term. It is important to analyze the hyper-scaling with correction terms, Although

a correction term may not necessarily be efficient for all the quantities.
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Near the optimal value of !, the data become to align, 
 where linearity is observed.

•  L-> infinity, the (infinite volume) hyper-scaling relation is obtained. 
•  3 fit parameters : c0, c1, ! 
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ChPT fit (after infinite volume extrapolation) 

• 2nd order polynomial fit is reasonably good for small mass range & c0>0
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:fpi}
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FIG. 20. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0101(54) 1.53(19) -4.8(1.5) - 2.09

fit 1 : [0.04, 0.1] 0.0138(29) 1.39(88) -3.62(61) - 1.39

fit 1 : [0.04, 0.12] 0.0226(17) 1.113(45) -1.64(27) - 5.42

fit 2 : [0.04, 0.16] 0.0182(34) 1.28(13) -3.4(1.3) 6.0(4.2) 4.75

β = 4 fit 1 : [0.05, 0.1] -0.00006(530) 1.51(15) -4.95(92) - 0.20

fit 1 : [0.05, 0.12] 0.0156(27) 1.073(67) -2.08(39) - 6.18

fit 2 : [0.05, 0.16] 0.0031(61) 1.52(20) -7.1(2.0) 17.8(6.2) 3.81

TABLE XII. The fit results on Fπ in infinite volume limit. {tab:chpt_fpi}

fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0020(34) 0.15(13) 3.3(1.1) - 0.20

fit 1 : [0.04, 0.1] -0.0047(19) 0.251(62) 2.35(44) - 0.59

fit 1 : [0.04, 0.12] -0.0018(13) 0.150(39) 3.10(26) - 1.92

fit 1 : [0.04, 0.16] -0.0003(26) 0.07(11) 4.3(1.1) -6.0(3.9) 2.91

β = 4 fit 1 : [0.05, 0.1] -0.0121(39) 0.39(11) 0.15(72) - 2.08

fit 1 : [0.05, 0.12] -0.0076(26) 0.258(67) 1.07(41) - 2.26

fit 2 : [0.05, 0.16] -0.0120(54) 0.43(19) -1.0(1.9) 7.8(6.2) 1.97

TABLE XIII. The full fit results on (FπMπ)2/mf in infinite volume limit. {tab:chpt_pbp}

Further detailed study adopting a finite size scaling have shown that our data are rea-

sonably consistent with the finite size hyper scaling (FSHS), where the product of linear

system size and the composite masses or decay constants falls into a function of a universal

scaling variable composed of the mf , linear system size L and mass anomalous dimension γ∗

at the IRFP at low energy. The resulting γ∗ obtained with the introduced evaluation func-

tion of the scaling were reasonably consistent with each other for three observables and two

lattice spacings when only the aforementioned decay constant at finer lattice was excluded.

We concluded if there was an IRFP, the mass anomalous dimension there is in the range

0.4 <∼ γ∗ <∼ 0.5.

An existence of the non-universal correction indicated by the FSHS motivated a study

of global fit with models assumed in the correction. By adding a correction term to the
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FIG. 16. The results of the finite volume scaling fit for Mπ and fπ at β = 3.7 using a leading

correction in the equation. {fig:finite}
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FIG. 17. The results of the finite volume scaling fit for Mπ and fπ at β = 4 using a leading

correction in the equation. {fig:finite_b4}

where c0,1,2,3 are free parameters. This function corresponds to next leading order ChPT

function without log term. In M2
π case, it is noted that the constant term c0 should be zero.

Using these simple polynomial functions we carry out the fits for M2
π , Fπ and the chiral

condensate by the function h(mf ) varying the fit range of the fermion mass from mf = 0.04

to mf = 0.16. The fit functions h(mf ) of fit 1, 2 correspond as

h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

The fit results for M2
π are shown in Fig. 18 and table XI. As we see the data at β = 3.7

and 4.0, the center value of c0 obtained from the fit with polynomial function is negative for
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ChPT fit (after infinite volume extrapolation) 

• 2nd order polynomial fit is reasonably good for small mass range & c0>0
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:fpi}
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FIG. 20. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0101(54) 1.53(19) -4.8(1.5) - 2.09

fit 1 : [0.04, 0.1] 0.0138(29) 1.39(88) -3.62(61) - 1.39

fit 1 : [0.04, 0.12] 0.0226(17) 1.113(45) -1.64(27) - 5.42

fit 2 : [0.04, 0.16] 0.0182(34) 1.28(13) -3.4(1.3) 6.0(4.2) 4.75

β = 4 fit 1 : [0.05, 0.1] -0.00006(530) 1.51(15) -4.95(92) - 0.20

fit 1 : [0.05, 0.12] 0.0156(27) 1.073(67) -2.08(39) - 6.18

fit 2 : [0.05, 0.16] 0.0031(61) 1.52(20) -7.1(2.0) 17.8(6.2) 3.81

TABLE XII. The fit results on Fπ in infinite volume limit. {tab:chpt_fpi}

fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0020(34) 0.15(13) 3.3(1.1) - 0.20

fit 1 : [0.04, 0.1] -0.0047(19) 0.251(62) 2.35(44) - 0.59

fit 1 : [0.04, 0.12] -0.0018(13) 0.150(39) 3.10(26) - 1.92

fit 1 : [0.04, 0.16] -0.0003(26) 0.07(11) 4.3(1.1) -6.0(3.9) 2.91

β = 4 fit 1 : [0.05, 0.1] -0.0121(39) 0.39(11) 0.15(72) - 2.08

fit 1 : [0.05, 0.12] -0.0076(26) 0.258(67) 1.07(41) - 2.26

fit 2 : [0.05, 0.16] -0.0120(54) 0.43(19) -1.0(1.9) 7.8(6.2) 1.97

TABLE XIII. The full fit results on (FπMπ)2/mf in infinite volume limit. {tab:chpt_pbp}

Further detailed study adopting a finite size scaling have shown that our data are rea-

sonably consistent with the finite size hyper scaling (FSHS), where the product of linear

system size and the composite masses or decay constants falls into a function of a universal

scaling variable composed of the mf , linear system size L and mass anomalous dimension γ∗

at the IRFP at low energy. The resulting γ∗ obtained with the introduced evaluation func-

tion of the scaling were reasonably consistent with each other for three observables and two

lattice spacings when only the aforementioned decay constant at finer lattice was excluded.

We concluded if there was an IRFP, the mass anomalous dimension there is in the range

0.4 <∼ γ∗ <∼ 0.5.

An existence of the non-universal correction indicated by the FSHS motivated a study

of global fit with models assumed in the correction. By adding a correction term to the
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FIG. 16. The results of the finite volume scaling fit for Mπ and fπ at β = 3.7 using a leading

correction in the equation. {fig:finite}
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FIG. 17. The results of the finite volume scaling fit for Mπ and fπ at β = 4 using a leading

correction in the equation. {fig:finite_b4}

where c0,1,2,3 are free parameters. This function corresponds to next leading order ChPT

function without log term. In M2
π case, it is noted that the constant term c0 should be zero.

Using these simple polynomial functions we carry out the fits for M2
π , Fπ and the chiral

condensate by the function h(mf ) varying the fit range of the fermion mass from mf = 0.04

to mf = 0.16. The fit functions h(mf ) of fit 1, 2 correspond as

h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

The fit results for M2
π are shown in Fig. 18 and table XI. As we see the data at β = 3.7

and 4.0, the center value of c0 obtained from the fit with polynomial function is negative for
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ChPT fit (after infinite volume extrapolation) 

0.04 0.05 0.06 0.08

cMπ 125(34) 285(35) 270(14) 790(310)

Mπ 0.3029(15) 0.3518(11) 0.3991(14) 0.4876(9)

χ2/dof 3.49 1.95 0.75 0.19

cFπ 0.1(8.3) 7(21) -66(33) 160(200)

Fπ 0.0633(6) 0.0750(5) 0.0840(7) 0.1018(6)

χ2/dof 0.045 4.07 0.013 0.42

TABLE XI. The results on the parameters

below mf = 0.08 in infinite volume extrapo-

lation fit at β = 3.7. {tab:finite}

0.05 0.06 0.08 0.1

cMπ 353(28) 552(48) 480(170) -180(1500)

Mπ 0.3188(21) 0.3646(10) 0.4480(8) 0.5217(6)

χ2/dof 3.67 1.80 11.2 2.42

cFπ -24.4(4.4) -65(14) -92(82) -230(670)

Fπ 0.0630(6) 0.0728(3) 0.0890(6) 0.1015(31)

χ2/dof 0.22 0.46 4.13 0.20

TABLE XII. The results on the parameters

less than mf = 0.1 in infinite volume extrap-

olation fit at β = 4. {tab:finite_b4}

ChPT formula as

M2
π or Fπ = c0 + c1mf + c2m

2
f + c3m

3
f + · · · (20)

where c0,1,2,3 are free parameters. It is noted that the constant term c0 of M2
π should be

zero. Using these simple polynomial functions we carry out the fits for Mπ and Fπ varying

the fit range of the fermion mass from mf = 0.04 to mf = 0.16. The fit functions h(mf ) of

fit 1,2 correspond as

M2
π = h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

We carry our the fits for the several fermion mass ranges with two fitting functions.

The fit results are shown in Fig. 18 and table XIII. Now we focus on the constant term

c0 which should be zero in the chiral broken phase. As we see the data at β = 3.7 and 4.0,

the center value of c0 obtained from the fit with polynomial function is negative for M2
π ,

where the value of χ2/dof is at acceptable level. While some of results are still consistent

with zero within the statistical error, this is quite strange behavior if we take the result

from chiral extrapolation seriously. For simplicity our fit analysis shown here is based on

the polynomial function. If the chiral log correction terms enter the fit as follows

h(mf ) = c0 + c1mf +m2
f (c2 + c3 logmf ) , (22)

26

from a lattice result on the deeply hadronic phase. This fact is suggestive of a kind of the

scale invariance (in other words walking behavior).

Above fit analyses for the pion mass and the chiral condensation are rather simple and

restricted by a certain range of the fermion mass. We can not rule out the possibility that

our data obey the ChPT within the accuracy of the data. The more investigation about

continuum limit with high precision study is needed. The complementary study using other

channels like a scalar bound state is also helpful. We are currently extending our analysis

to smaller fermion mass with larger lattice size for obtaining a definitive result.
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0090(93) 1.95(32) 14.2(2.6) - 0.16

[0] 1.640(31) 16.68(47) - 0.56

fit 1 : [0.04, 0.1] -0.0232(50) 2.46(16) 9.9(1.1) - 1.75

[0] 1.754(21) 14.73(25) - 8.54

fit 1 : [0.04, 0.12] -0.0174(31) 2.27(85) 11.32(52) - 1.93

[0] 1.801(16) 14.09(16) - 9.36

fit 2 : [0.04, 0.16] -0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

[0] 1.537(29) 20.76(53) -38.2(2.3) 2.59

β = 4 fit 1 : [0.05, 0.1] -0.0429(93) 2.61(25) 5.4(1.6) - 0.41

[0] 1.469(25) 12.61(28) - 11.03

fit 1 : [0.05, 0.12] -0.0235(54) 2.07(14) 8.97(76) - 3.55

[0] 1.501(19) 12.20(19) - 8.79

fit 2 : [0.05, 0.16] -0.026(12) 2.14(39) 8.6(3.9) -0.7(12.0) 3.86

[0] 1.288(39) 17.13(69) -27.0(2.9) 4.22

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit. {tab:chpt}

the existence of the infrared fixed point (IRFP) of the beta function, through the fermion

mass mf dependence of the spectrum. A type of highly improved staggered quark (HISQ)

action was adapted to maximally suppress the staggered flavor symmetry violation as well

as the other discretization errors. Three volumes with fixed aspect ratio and various mf

were examined. Simulations were repeated for two values of the bare gauge coupling, cor-

responding to two different lattice spacings separated by an approximate factor of 2. The

movement of the lattice spacing to finner when the bare gauge coupling is made small is

consistent with being in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and vector channel and the pseudoscalar

decay constant revealed a range of small mf where the ratios of composite masses and decay

constant are independent of mf . This is consistent with the hyper scaling characteristic to

the low energy conformality, and was observed all the quantities except for the one that

involves the decay constant at the finer lattice.
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ChPT fit (after infinite volume extrapolation) 

• wide range fit ends up c0<0

0.04 0.05 0.06 0.08

cMπ 125(34) 285(35) 270(14) 790(310)

Mπ 0.3029(15) 0.3518(11) 0.3991(14) 0.4876(9)

χ2/dof 3.49 1.95 0.75 0.19

cFπ 0.1(8.3) 7(21) -66(33) 160(200)

Fπ 0.0633(6) 0.0750(5) 0.0840(7) 0.1018(6)

χ2/dof 0.045 4.07 0.013 0.42

TABLE XI. The results on the parameters

below mf = 0.08 in infinite volume extrapo-

lation fit at β = 3.7. {tab:finite}

0.05 0.06 0.08 0.1

cMπ 353(28) 552(48) 480(170) -180(1500)

Mπ 0.3188(21) 0.3646(10) 0.4480(8) 0.5217(6)

χ2/dof 3.67 1.80 11.2 2.42

cFπ -24.4(4.4) -65(14) -92(82) -230(670)

Fπ 0.0630(6) 0.0728(3) 0.0890(6) 0.1015(31)

χ2/dof 0.22 0.46 4.13 0.20

TABLE XII. The results on the parameters

less than mf = 0.1 in infinite volume extrap-

olation fit at β = 4. {tab:finite_b4}

ChPT formula as

M2
π or Fπ = c0 + c1mf + c2m

2
f + c3m

3
f + · · · (20)

where c0,1,2,3 are free parameters. It is noted that the constant term c0 of M2
π should be

zero. Using these simple polynomial functions we carry out the fits for Mπ and Fπ varying

the fit range of the fermion mass from mf = 0.04 to mf = 0.16. The fit functions h(mf ) of

fit 1,2 correspond as

M2
π = h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

We carry our the fits for the several fermion mass ranges with two fitting functions.

The fit results are shown in Fig. 18 and table XIII. Now we focus on the constant term

c0 which should be zero in the chiral broken phase. As we see the data at β = 3.7 and 4.0,

the center value of c0 obtained from the fit with polynomial function is negative for M2
π ,

where the value of χ2/dof is at acceptable level. While some of results are still consistent

with zero within the statistical error, this is quite strange behavior if we take the result

from chiral extrapolation seriously. For simplicity our fit analysis shown here is based on

the polynomial function. If the chiral log correction terms enter the fit as follows

h(mf ) = c0 + c1mf +m2
f (c2 + c3 logmf ) , (22)

26

from a lattice result on the deeply hadronic phase. This fact is suggestive of a kind of the

scale invariance (in other words walking behavior).

Above fit analyses for the pion mass and the chiral condensation are rather simple and

restricted by a certain range of the fermion mass. We can not rule out the possibility that

our data obey the ChPT within the accuracy of the data. The more investigation about

continuum limit with high precision study is needed. The complementary study using other

channels like a scalar bound state is also helpful. We are currently extending our analysis

to smaller fermion mass with larger lattice size for obtaining a definitive result.
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0090(93) 1.95(32) 14.2(2.6) - 0.16

[0] 1.640(31) 16.68(47) - 0.56

fit 1 : [0.04, 0.1] -0.0232(50) 2.46(16) 9.9(1.1) - 1.75

[0] 1.754(21) 14.73(25) - 8.54

fit 1 : [0.04, 0.12] -0.0174(31) 2.27(85) 11.32(52) - 1.93

[0] 1.801(16) 14.09(16) - 9.36

fit 2 : [0.04, 0.16] -0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

[0] 1.537(29) 20.76(53) -38.2(2.3) 2.59

β = 4 fit 1 : [0.05, 0.1] -0.0429(93) 2.61(25) 5.4(1.6) - 0.41

[0] 1.469(25) 12.61(28) - 11.03

fit 1 : [0.05, 0.12] -0.0235(54) 2.07(14) 8.97(76) - 3.55

[0] 1.501(19) 12.20(19) - 8.79

fit 2 : [0.05, 0.16] -0.026(12) 2.14(39) 8.6(3.9) -0.7(12.0) 3.86

[0] 1.288(39) 17.13(69) -27.0(2.9) 4.22

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit. {tab:chpt}

the existence of the infrared fixed point (IRFP) of the beta function, through the fermion

mass mf dependence of the spectrum. A type of highly improved staggered quark (HISQ)

action was adapted to maximally suppress the staggered flavor symmetry violation as well

as the other discretization errors. Three volumes with fixed aspect ratio and various mf

were examined. Simulations were repeated for two values of the bare gauge coupling, cor-

responding to two different lattice spacings separated by an approximate factor of 2. The

movement of the lattice spacing to finner when the bare gauge coupling is made small is

consistent with being in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and vector channel and the pseudoscalar

decay constant revealed a range of small mf where the ratios of composite masses and decay

constant are independent of mf . This is consistent with the hyper scaling characteristic to

the low energy conformality, and was observed all the quantities except for the one that

involves the decay constant at the finer lattice.
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ChPT fit (after infinite volume extrapolation) 

• wide range fit ends up c0<0

• consistent with c0=0 for small mass range

0.04 0.05 0.06 0.08

cMπ 125(34) 285(35) 270(14) 790(310)

Mπ 0.3029(15) 0.3518(11) 0.3991(14) 0.4876(9)

χ2/dof 3.49 1.95 0.75 0.19

cFπ 0.1(8.3) 7(21) -66(33) 160(200)

Fπ 0.0633(6) 0.0750(5) 0.0840(7) 0.1018(6)

χ2/dof 0.045 4.07 0.013 0.42

TABLE XI. The results on the parameters

below mf = 0.08 in infinite volume extrapo-

lation fit at β = 3.7. {tab:finite}

0.05 0.06 0.08 0.1

cMπ 353(28) 552(48) 480(170) -180(1500)

Mπ 0.3188(21) 0.3646(10) 0.4480(8) 0.5217(6)

χ2/dof 3.67 1.80 11.2 2.42

cFπ -24.4(4.4) -65(14) -92(82) -230(670)

Fπ 0.0630(6) 0.0728(3) 0.0890(6) 0.1015(31)

χ2/dof 0.22 0.46 4.13 0.20

TABLE XII. The results on the parameters

less than mf = 0.1 in infinite volume extrap-

olation fit at β = 4. {tab:finite_b4}

ChPT formula as

M2
π or Fπ = c0 + c1mf + c2m

2
f + c3m

3
f + · · · (20)

where c0,1,2,3 are free parameters. It is noted that the constant term c0 of M2
π should be

zero. Using these simple polynomial functions we carry out the fits for Mπ and Fπ varying

the fit range of the fermion mass from mf = 0.04 to mf = 0.16. The fit functions h(mf ) of

fit 1,2 correspond as

M2
π = h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

We carry our the fits for the several fermion mass ranges with two fitting functions.

The fit results are shown in Fig. 18 and table XIII. Now we focus on the constant term

c0 which should be zero in the chiral broken phase. As we see the data at β = 3.7 and 4.0,

the center value of c0 obtained from the fit with polynomial function is negative for M2
π ,

where the value of χ2/dof is at acceptable level. While some of results are still consistent

with zero within the statistical error, this is quite strange behavior if we take the result

from chiral extrapolation seriously. For simplicity our fit analysis shown here is based on

the polynomial function. If the chiral log correction terms enter the fit as follows

h(mf ) = c0 + c1mf +m2
f (c2 + c3 logmf ) , (22)

26

from a lattice result on the deeply hadronic phase. This fact is suggestive of a kind of the

scale invariance (in other words walking behavior).

Above fit analyses for the pion mass and the chiral condensation are rather simple and

restricted by a certain range of the fermion mass. We can not rule out the possibility that

our data obey the ChPT within the accuracy of the data. The more investigation about

continuum limit with high precision study is needed. The complementary study using other

channels like a scalar bound state is also helpful. We are currently extending our analysis

to smaller fermion mass with larger lattice size for obtaining a definitive result.
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0090(93) 1.95(32) 14.2(2.6) - 0.16

[0] 1.640(31) 16.68(47) - 0.56

fit 1 : [0.04, 0.1] -0.0232(50) 2.46(16) 9.9(1.1) - 1.75

[0] 1.754(21) 14.73(25) - 8.54

fit 1 : [0.04, 0.12] -0.0174(31) 2.27(85) 11.32(52) - 1.93

[0] 1.801(16) 14.09(16) - 9.36

fit 2 : [0.04, 0.16] -0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

[0] 1.537(29) 20.76(53) -38.2(2.3) 2.59

β = 4 fit 1 : [0.05, 0.1] -0.0429(93) 2.61(25) 5.4(1.6) - 0.41

[0] 1.469(25) 12.61(28) - 11.03

fit 1 : [0.05, 0.12] -0.0235(54) 2.07(14) 8.97(76) - 3.55

[0] 1.501(19) 12.20(19) - 8.79

fit 2 : [0.05, 0.16] -0.026(12) 2.14(39) 8.6(3.9) -0.7(12.0) 3.86

[0] 1.288(39) 17.13(69) -27.0(2.9) 4.22

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit. {tab:chpt}

the existence of the infrared fixed point (IRFP) of the beta function, through the fermion

mass mf dependence of the spectrum. A type of highly improved staggered quark (HISQ)

action was adapted to maximally suppress the staggered flavor symmetry violation as well

as the other discretization errors. Three volumes with fixed aspect ratio and various mf

were examined. Simulations were repeated for two values of the bare gauge coupling, cor-

responding to two different lattice spacings separated by an approximate factor of 2. The

movement of the lattice spacing to finner when the bare gauge coupling is made small is

consistent with being in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and vector channel and the pseudoscalar

decay constant revealed a range of small mf where the ratios of composite masses and decay

constant are independent of mf . This is consistent with the hyper scaling characteristic to

the low energy conformality, and was observed all the quantities except for the one that

involves the decay constant at the finer lattice.
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ChPT fit (after infinite volume extrapolation) 

• wide range fit ends up c0<0

• consistent with c0=0 for small mass range

• But:    M!/(4!F)~2   at lightest point → difficult to tell real chiral behavior

0.04 0.05 0.06 0.08

cMπ 125(34) 285(35) 270(14) 790(310)

Mπ 0.3029(15) 0.3518(11) 0.3991(14) 0.4876(9)

χ2/dof 3.49 1.95 0.75 0.19

cFπ 0.1(8.3) 7(21) -66(33) 160(200)

Fπ 0.0633(6) 0.0750(5) 0.0840(7) 0.1018(6)

χ2/dof 0.045 4.07 0.013 0.42

TABLE XI. The results on the parameters

below mf = 0.08 in infinite volume extrapo-

lation fit at β = 3.7. {tab:finite}

0.05 0.06 0.08 0.1

cMπ 353(28) 552(48) 480(170) -180(1500)

Mπ 0.3188(21) 0.3646(10) 0.4480(8) 0.5217(6)

χ2/dof 3.67 1.80 11.2 2.42

cFπ -24.4(4.4) -65(14) -92(82) -230(670)

Fπ 0.0630(6) 0.0728(3) 0.0890(6) 0.1015(31)

χ2/dof 0.22 0.46 4.13 0.20

TABLE XII. The results on the parameters

less than mf = 0.1 in infinite volume extrap-

olation fit at β = 4. {tab:finite_b4}

ChPT formula as

M2
π or Fπ = c0 + c1mf + c2m

2
f + c3m

3
f + · · · (20)

where c0,1,2,3 are free parameters. It is noted that the constant term c0 of M2
π should be

zero. Using these simple polynomial functions we carry out the fits for Mπ and Fπ varying

the fit range of the fermion mass from mf = 0.04 to mf = 0.16. The fit functions h(mf ) of

fit 1,2 correspond as

M2
π = h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

We carry our the fits for the several fermion mass ranges with two fitting functions.

The fit results are shown in Fig. 18 and table XIII. Now we focus on the constant term

c0 which should be zero in the chiral broken phase. As we see the data at β = 3.7 and 4.0,

the center value of c0 obtained from the fit with polynomial function is negative for M2
π ,

where the value of χ2/dof is at acceptable level. While some of results are still consistent

with zero within the statistical error, this is quite strange behavior if we take the result

from chiral extrapolation seriously. For simplicity our fit analysis shown here is based on

the polynomial function. If the chiral log correction terms enter the fit as follows

h(mf ) = c0 + c1mf +m2
f (c2 + c3 logmf ) , (22)

26

from a lattice result on the deeply hadronic phase. This fact is suggestive of a kind of the

scale invariance (in other words walking behavior).

Above fit analyses for the pion mass and the chiral condensation are rather simple and

restricted by a certain range of the fermion mass. We can not rule out the possibility that

our data obey the ChPT within the accuracy of the data. The more investigation about

continuum limit with high precision study is needed. The complementary study using other

channels like a scalar bound state is also helpful. We are currently extending our analysis

to smaller fermion mass with larger lattice size for obtaining a definitive result.
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0090(93) 1.95(32) 14.2(2.6) - 0.16

[0] 1.640(31) 16.68(47) - 0.56

fit 1 : [0.04, 0.1] -0.0232(50) 2.46(16) 9.9(1.1) - 1.75

[0] 1.754(21) 14.73(25) - 8.54

fit 1 : [0.04, 0.12] -0.0174(31) 2.27(85) 11.32(52) - 1.93

[0] 1.801(16) 14.09(16) - 9.36

fit 2 : [0.04, 0.16] -0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

[0] 1.537(29) 20.76(53) -38.2(2.3) 2.59

β = 4 fit 1 : [0.05, 0.1] -0.0429(93) 2.61(25) 5.4(1.6) - 0.41

[0] 1.469(25) 12.61(28) - 11.03

fit 1 : [0.05, 0.12] -0.0235(54) 2.07(14) 8.97(76) - 3.55

[0] 1.501(19) 12.20(19) - 8.79

fit 2 : [0.05, 0.16] -0.026(12) 2.14(39) 8.6(3.9) -0.7(12.0) 3.86

[0] 1.288(39) 17.13(69) -27.0(2.9) 4.22

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit. {tab:chpt}

the existence of the infrared fixed point (IRFP) of the beta function, through the fermion

mass mf dependence of the spectrum. A type of highly improved staggered quark (HISQ)

action was adapted to maximally suppress the staggered flavor symmetry violation as well

as the other discretization errors. Three volumes with fixed aspect ratio and various mf

were examined. Simulations were repeated for two values of the bare gauge coupling, cor-

responding to two different lattice spacings separated by an approximate factor of 2. The

movement of the lattice spacing to finner when the bare gauge coupling is made small is

consistent with being in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and vector channel and the pseudoscalar

decay constant revealed a range of small mf where the ratios of composite masses and decay

constant are independent of mf . This is consistent with the hyper scaling characteristic to

the low energy conformality, and was observed all the quantities except for the one that

involves the decay constant at the finer lattice.
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Summary:
  SU(3) gauge theory with Nf=12 fundamental fermion simulation with HISQ

• β=3.7,  4.0:  consistent with being in the asymptotically free regime

• M!, F!, Mρ: consistent with the finite size hyper scaling for conformal theory

• resulting γ* from different quantities, lattice spacings are consistent except

• F! at β=4.0 (mf likely too heavy for universal mass dep. to dominate)

• need careful continuum scaling needed to get more accurate than 0.4<γ*<0.5

• real / remnant (approximate) conformal property is definitely there

• could not exclude SχSB with very small breaking scale

• even if SχSB, γm too small for walking theory of phenomenological interest

• Nf=8 theory is interesting & under investigation with same lattice set up



Thank you for your attention



ChPT inspired infinite volume limit  (β=3.7)

• ChPT type finite volume effect → chiral fit results not inconsistent with SχSB

A. The finite size dependence of the physical quantities

The finite volume corrections of the NG-boson mass and decay constant are also given

by the ChPT [42] or Luscher-type formula [43] using the ChPT relations which are

Mπ(L)−Mπ = +A
1

2Nf

K1(LMπ)

LMπ
+O(e−

√
2LMπ), (16)

Fπ(L)− Fπ = −A
Nf

2

K1(LMπ)

LMπ
+O(e−

√
2LMπ), (17)

where A is a constant described by Mπ and fπ and K1 is a Bessel function of the second

kind and its asymptotic behavior is K1(z) ∼
√
π/(2z)e−z. Mπ and Fπ are the NG-boson

mass and the decay constant in the infinite volume limit. We try to understand the volume

dependence based on the ChPT-like finite volume scaling. We use the following simplified

formula

Mπ(L)−Mπ = cMπ

e−LMπ

(LMπ)3/2
(18)

Fπ(L)− Fπ = cFπ

e−LMπ

(LMπ)3/2
, (19)

where we do not fix the parameters cMπ and cFπ . Our fitting procedure is as follows. First

we determine two parameters of cMπ and Mπ for each fermion masses by the fits using three

data points with L = 18, 24 and 30. Using the fit results of Mπ, we determine the two

parameters of cFπ and Fπ by the fits. Thus we obtain the results of Mπ and Fπ in infinite

volume limit. The fit results are shown in fig.16 and 17 and the fit parameters are given in

table IX and X.

As a result, in entire fermion mass region, our data are reasonably fitted. Furthermore

from the fit results, one can find that our data on L = 30 is still consistent with the result

in infinite volume limit. It is also noted that for our data of Fπ at β = 3.7 it is difficult for

the cases of Fπ to determine the sign of the constant terms cFπ (consistent with zero).

B. ChPT fit analysis

After taking the infinite volume limit, we analyze the fit using these data by the following

form as

h(mf ) = c0 + c1mf + c2m
2
f + c3m

3
f (20)
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FIG. 16. The results of the finite volume scaling fit for Mπ and fπ at β = 3.7 using a leading

correction in the equation. {fig:finite}
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FIG. 17. The results of the finite volume scaling fit for Mπ and fπ at β = 4 using a leading

correction in the equation. {fig:finite_b4}

where c0,1,2,3 are free parameters. This function corresponds to next leading order ChPT

function without log term. In M2
π case, it is noted that the constant term c0 should be zero.

Using these simple polynomial functions we carry out the fits for M2
π , Fπ and the chiral

condensate by the function h(mf ) varying the fit range of the fermion mass from mf = 0.04

to mf = 0.16. The fit functions h(mf ) of fit 1, 2 correspond as

h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

The fit results for M2
π are shown in Fig. 18 and table XI. As we see the data at β = 3.7

and 4.0, the center value of c0 obtained from the fit with polynomial function is negative for
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HISQ action

• proposed by HPQCD collaboration for

• smaller taste violation than other approaches

• better handling of heavy quarks

• being used in simulations

• MILC: Nf=2+1+1 QCD

• HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat’10 proceedings)

• HISQ/tree is best of [HISQ/tree, Asqtad, stout] 

 for flavor (taste) symmetry, dispersion relation

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-

perturbative calculation.

Ψ(x), Aµ(x), x ∈ R4
: continuous infinity

quantum divergences: needs regularization and renormalization

ψ(n + µ̂)ψ(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ∼ 0.1 fm

(UV cut-off |p| ≤ π/a)

• ψ(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ∼ O(1, 000) files o f gauge

configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

�O� =
�
DUµ Prob[Uµ]×O[Uµ]

Taku Izubuchi, Wako, Mini Workshop on Lattice QCD at RIKEN, Decmber 22, 2009 7
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HISQ action

• proposed by HPQCD collaboration for

• smaller taste violation than other approaches

• better handling of heavy quarks

• being used in simulations

• MILC: Nf=2+1+1 QCD

• HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat’10 proceedings)

• HISQ/tree is best of [HISQ/tree, Asqtad, stout] 

 for flavor (taste) symmetry, dispersion relation

Taste symmetry and QCD thermodynamics Alexei Bazavov
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Figure 1: The splitting between different pion mul-
tiplets calculated for HISQ/tree, mG ≡ m"5 .

Figure 2: RMS pion mass when m"5 = 140 MeV.
See details in the text.

performing such fits, we obtained the splittings #$ as functions of a2 for HISQ/tree, asqtad and
stout.

Having data for the splittings we set the Goldstone pion mass to m"5 = 140 MeV and calculate
the root-mean-squared (RMS) pion mass as a function of the lattice spacing:

mRMS
! =

√

1
16

(

m2"5 +m2"0"5 +3m2"i"5 +3m2"i" j +3m2"i"0 +3m2"i +m2"0+m21
)

. (2.1)

The results are presented in Fig. 2. Curves show the RMS pion mass obtained from fitted values
of #$ . The thickness of each band represents the systematic error introduced by varying the end of
the fitting interval from 0.17 to 0.22 fm. The symbols correspond to the RMS pion calculated from
the measured pion splittings. For our estimates below we took the midpoints in each band.

Consider lattice spacing a = 0.15 fm. On an N% = 8 lattice it corresponds to temperature
T = 164 MeV, well in the transition region. At this a the RMS pion mass is 306MeV for HISQ/tree,
394 MeV for stout, and 496 MeV for asqtad. Having the same mass as for HISQ/tree requires
a= 0.102 fm for asqtad and a= 0.109 for stout. In other words, a HISQ/tree simulation on N% = 8
at T = 164 MeV is comparable to an asqtad simulation on N% = 197.3/164/0.102 " 11.8, or a
stout simulation on N% = 197.3/164/0.109 " 11.0 at the same T . Thus, we expect HISQ/tree
N% = 8 results to be close to stout N% = 10 and asqtad N% = 12 results, as far as the taste symmetry
is concerned. For comparison, if one desires to have 200 MeV RMS pion at T = 164 MeV, this
requires a = 0.089 fm for HISQ/tree, a = 0.067 fm for asqtad, and a = 0.062 fm for stout. This
translates into the temporal extent of N% " 13.5, 18.0, 19.4, respectively, for these actions. The
lattice spacings discussed above are represented with vertical lines in Fig. 2. These estimates are
rather crude, but are completely in line with the conclusion of [5] that a HISQ (or HISQ/tree)
ensemble with spacing a is comparable to an asqtad ensemble with 2/3a.

Lattice artifacts, related to taste symmetry breaking, affect masses of hadron states, and, in
general, distort the hadron spectrum. In our simulations the masses of the pseudoscalar mesons
m! and mK were used as input to constrain the LCP. However, other states, e.g. vector mesons
or baryons, are predictions and can show how well the spectrum can be reproduced at a given
lattice spacing. In Fig. 3 we present masses of & , K∗, ' mesons, nucleon and (-baryon along with
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LHC (Large Hadron Collider)

• excess @ ~125 GeV

• 1 σ level (look elsewhere)

• larger when ATLAS & CMS results are combined ?

• MW=MZcosθW=gF!/2 (F!=vweak=246 GeV)

• MH~500 GeV:  problem ?

• even if scalar is fund at ~125 GeV

• possible techni-dilaton (Matsuzaki-Yamawaki,,)

• 0++ glueball tends to be much lighter than techni-hadrons

• Cf. SU(2) lattice work by Del Debbio et al

• important to investigate glueball for SU(3) as well !!!


